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In this paper finite-ditference solutions of the Helmholtz equation in
an open domain are considered, By using a second-order centrat dif-
ference scheme and the Bayliss-Turke! radiation boundary condition,
reasonably accurate solutions can be abtained when the number of grid
points per acoustic wavelength used is {arge. However, when a smaller
number of grid points per wavelength is used excessive reflections
occus which tend to overwhelm the computed solutions. Excessive
reflections are due to the incompability between the governing finite
difference equation and the Bayliss-Turkel radiation boundary condi-
tion. The Bayliss-Turkel radiation boundary ¢ondition was developed
from the asymptotic solution of the partial differential equation. To
obtain compatibility, the radiation boundary condition should be con-
structed from the asymptotic solution of the finite difference equation
instead. Examples are provided using the improved radiation boundary
condition based on the asymptotic solution of the governing finite dif-
ference equation. The computed resulls are tree ot reflections even
when only five grid points per wavelength are used. The improved
radiation boundary condition has also been tested for problems with
complex acoustic sources and sources embedded in a uniform mean
flow. The present method of developing a radiation boundary condition
is also applicable to higher order finite difference schemes. In all these
cases no reflected waves could be detected. The use of finite difference
approximation inevitably introduces anisotropy into the governing field
equation. The effect of anisotropy is to distort the directional distribu-
tion of the amplitude and phase of the computed solution. It can be
quite large when the number of grid points per wavelength used in the
computation is smail. A way to correct this effect is proposed. The
correction factor devetoped from the asymptotic solutions is source
independent and, hence, can be determined once and for all. The effec-
tiveness of the correction factor in providing improvements to the com-
puted solution is demonstrated in this paper.  © 1994 Academic Press. Inc.

1. INTRODUCTION

This work is motivated by the need to perform direct
numerical simulation of aeroacoustics problems. Aero-
acoustics is the branch of science which deals with the
gencration and propagation of aircralt noise. Aicraft noise
consists of both broadband and discrete components.
Broadband components such as jet and airframe noise
involve a large range ol acoustic frequencies and
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wavelengths. Qthers such as propeller noise involve discrete
tones of very high frequencies. To be able to deal with this
class of problems it is imperative to use a computation
scheme which can resolve waves of very short wavelengths.
For a sinusoidal wave a minimum of about five grid points
is required to define the waveform. Here our goal is to
examine the feasibility of oblaining accurate finite difference
acoustic wave solutions using as few as five grid points per
acoustic wavelength.

Most aeroacoustic problems are exterior open domain
problems. In practice, a finite computational domain is
employed. This necessitates the imposition of a radiation
boundary condition at the artificial boundaries of the com-
putational domain. Numerous papers have been written
now on the subject of radiation boundary conditions.
Nevertheless, few appear to have investigated the-
applicability of their proposed radiation boundary condi-
tion to cases where the wavelength is only five to six times
the spacing of the grid points. Bayliss, Turkel, and
coworkers [ 1-3] developed a family of radiation boundary
conditions for the simple wave equation and the Helmholtz
equation, based on the far field asymptotic solution of the
governing partial differential equation. The premise is that
in the far field the computed solution must have the same
form as the asymptotic solution. Engquist and Majda [4, 5]
used a pseudo-diflereatial operator technique to construct
absorbing boundary conditions for this class of problems.
The absorbing boundary condition minimizes the reflected
waves off the artificial boundary of the computation
domain. This idea has since been refined by Higden (6, 7]
and most recently generalized by Jiang and Wong [8].
Kosloff and Kosloff [9] proposed the incorporation of an
artificial damping layer as absorbing boundaries for wave
propagation problems. The basic idea of their method,
largely motivated by physical considerations, is consistent
with the thinking of Engquist and Majda. Aside from the
above methods a number of investigators formulated
radiating boundary conditions by means of the charac-
teristics of the governing partial differential equations. The
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most recent works in
Thompson [ 10, 11].

In the absence of a mean flow, acoustic waves are
governed by the simple wave equation. If the sources of
sound have a discrete frequency, then by separating out
time {with e ="’ dependence) the acoustic wave equation
reduces to the Helmholtz equation

this category are given by

Vp+kip=1, (1)

where p is the pressure perturbation, V2 is the Laplacian
operator, and fis the source distribution; &, the wave num-
ber, is equal to 2n/4, where 4 is the acoustic wavelength. &
is related to the angular frequency of the wave @ and speed
of sound a, by k =w/a,. I the problem is two-dimensional
and fis a source localized at the origin, i,

f=—d(x)é(y) (2)

the solution of (1) satisfying an outgoing wave condition in
the far field is

i
p=gHPKkr),  r=(+ )7,

(3)

where H (' is the zeroth-order Hankel function of the first
kind. It is to be noted for later reference that |p| of (3)is a
monotonically deceasing function of x and that contours of
equal sound intensity of | p| are circles in the x — y piane.

Suppose (1) is discretized using second-order central
difference approximation with grid spacing Ax and Ay in
the x and y directions, respectively; then the governing finite
difference equation for p,, , (m, n are the indices in the x and
y directions) is

pm‘n+ 17 zpm.n + pm‘n— 1
(4y)?

Py l,n zpm.n+ P 1,n
(dx)?

+ kzpm,n =fm.n‘

+
(4a)

Upon muitiplying by {4y}’ the eguation becomes

Ap\?
-2 _—
(pm+ 1. pm,rr+ pm— l.n) (Ax)

+ (pm‘n+ 1~ zpm.n+ pm‘n—l]

+ (k 4Y) P = ol 4¥)% (4b)
The quantity k 4y =2n dy/4, which is equal to 2z divided
by the number of grid points per acoustic wavelength in the
v direction, is an intrinsic parameter of the governing finite
difference equation. It is, however, not a parameter of the
Helmholtz equation which difference equation (4) tries to
simulate. For simplicity unless otherwise stated 4x and Ay
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will be taken to be equal in this paper. To solve (4) in a finite
computational domain a radiation boundary condition is
needed. The Helmholtz equation has no characteristics so a
direct application of the characteristic radiation boundary
condition [10, 11] does not seem to be appropriate. The
absorbing boundary conditions [4-8] which are predicated
on minimizing reflections to the interior of the computa-
tional domain do not guarantee that the solution is not dis-
torted right at the boundary of the computational domain.
Since interest in aeroacoustics is invariably in the far field,
an extrapolation of the solution from the outer boundary is
usually required. From this standpoint the absorbing
boundary conditions are not as useful. The asymptotic
radiation boundary condition is, perhaps, most suitable for
our purpose. The first-order Bayliss—Turkel radiation
boundary condition for the Helmholtz equation may be
written as

(5)

The discretized form, to second-order accuracy, of {5) for a
boundary point {m, n) with polar coordinates (r,,, ,, 8, ,) is

(pm+1.n_pm—l,n) (Pm.n-i-]_pm,n—l)

COS gm,n 2Ax =+ s1n Bm.n 2Ay
ik ! =0 (6)
! 2",,,!,, pm.r: — M

Equation (6) provides the value of p at the ghost point
immediately outside the computational domain. At the
corner points, where there are two adjacent ghost points,
the values of p are assumed to be equal.

Equation (4) and boundary condition (6) form a closed
system of algebraic equations. The matrix equation can
easily be solved by a block tridiagonal algorithm for a given
value of the parameter A/4y. Figure 1 shows the distribution
of |p| in the positive x-direction for a monopole source
(Eq. (2}) at the origin. In the calcuiation a spatial resolution
of 10 grid points per wavelength and a computational
domain of 20 x 20 wavelengths were used. As can be seen the
computed magnitude of [p| generally decreases as x
increases in accordance with the exact solution (see Eq. (3))
of the Helmholtz equaton. However, it is also apparent that
the curve is not entirely smooth but has small amplitude
modulations. A closer cxamination indicates that the
amplitude modulations have a wavelength approximately
equal to half of that of the original acoustic waves. The
reason for the presence of small amplitude modulations is
not difficult to find. Suppose the radiation boundary condi-

tion is not perfect so that for an outgoing wave e~ a very
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FIG. 1. Distribution of pressure intensity, |p|, along the x-axis.

Monopole source at the origin. 10 grid points per wavelength:
compied solution; ——— exact solution.

small reflected wave ge =%~ (£ <€ 1} is created. The absolute
magnitude of the combined outgoing and reflected waves is

{(7)

Thus because of the small amplitude reflected wave there
will be a smali amplitude modulation of the total amplitude
at half the wavelength of the original acoustic wave.
Figure 2 shows the corresponding contour plot of | p| (con-
tours of equal sound intensity) in the x — y plane. The
deviations from circular contours are the results of very low
amplitude reflections off the boundaries of the computa-
tional domain. Aside from creating relatively small reflected
waves the Bayliss-Turkel radiation boundary condition
appears to work quite well at a resolution of 10 grid points
per wavelength. For many applications this could be
satisfactory.

Now let us decrease i/dy to 5, i.e., using a resolution of
five grid points per wavelength in Eq. (4} and boundary
condition (6), and recompaute the result. The amplitude dis-
tribution as a function of x is shown in Fig. 3 and the con-
tour plot in the x— y plane is given in Fig. 4. At this low
spatial resolution the reflected wave amplitude is no longer
insignificant. Figures 3 and 4 bear no resemblance to that of
the exact solution of the Helmholtz equation. It is not
unrcasonable to say that the Bayliss—Turkel radiation
boundary condition creates excessive reflections and an
improved radiation boundary condition is needed. It will be
shown later that by using an improved radiation boundary
condition a smooth numerical solution can be obtained.

|e® + ge = *~| = 1 + 26 cos(2kx) + O(e?).
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FIG. 2. Contours of equal sound intensity, |p|, in the x—y plane.
Monopole source at the origin. 10 grid points per wavelength.

In discussing the solution of wave propagation problems
by finite-difference approximation, Vichnevetsky and
Bowles [12] and Trefethen [13] noted that the phase and
group velocities of the waves of the difference equation are
anisotropic even though the same waves as described by
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FIG. 3. Calculated distribution of pressure intensity, |p|, along the
x-axis using the Bayliss-Turkel radiation boundary condition. Monopole
source at the origin. Five grid points per wavelength.



RADIATION BOUNDARY CONDITION AND ANISOTROPY

FIG. 4. Calculated contours of equal sound intensity, |p|, using the
Bayliss—Turke! radiation boundary condition, in the x-y plane. Monopole
source at the origin. Five grid points per wavelength.

the original partial differential equation are isotropic.
Anisotropy in the group velocity leads immediately to
distorted wave [ronts. For the Helmholtz equation which
provides a steady state response to time periodic forcing
there are no clearly defined wave fronts. However, it will be
demonstrated later that the computed wave amplitude is
anisotropic. The amplitude anisotropic referred to here
differs from that elaborated in [12,13]. The degree of
anisotropy depends strongly on the spatial parameter i/Ay.
For small /A4y it can be quite large. If uncorrected it could
even give misleading results.
The purpose of this paper is twofold:

(i) We propose an improved asymptotic radiation
boundary condition for the solution of the Helmholtz equa-
tion in an open domain. The tmproved radiation boundary
condition is to be effective even when low spatial resolution
is used. Unlike the Bayliss-Turkel radiation boundary
condition which is based on the asymptotic solution of the
partial differential equation the present improved radiation
boundary condition is developed from the asymptotic solu-
tion of the governing finite difference equation. It will be
shown that because of the compatibility between the field
equation and the improved radiation boundary condition,
reflections are totally eliminated even when only five grid
points per wavelength are employed in the computation
scheme.
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(ii) 'We will first describe the phenomenon of amplitude
anisotropy in solving the Helmhoitz equation by finite
difference approximation. Then we will propose a way to
correct this anisotropy. This is done by developing an
anisotropy correction factor based on the asymptotic
sclution of the Helmholtz equation (1) and that of the finite
difference equation (4). The correction factor is independent
of the acoustic sources present. It can hence be determined
once and for all.

In Section 2 an improved radiation boundary condition
for use in conjunction with the finite difference solution
of the Helmholtz equation will be developed. The
phenomenon of anisotropy will be examined in Section 3. A
correction factor will be developed and its effectiveness
demonstrated. In order to show that the improved radiation
boundary condition and anisotropy convection factor do
work in problems with complex acoustic sources, the
problem of acoustic wave diffraction by a flat plate of finite
length placed adjacent to a monopole source is considered
in Section 4.

2. IMPROVED RADIATION BOUNDARY CONDITION

Upon examining the monopole source problem in
Section 1 closely it appears that the suggestion of Bayliss
and Turkel of using the asymptotic solutions to construct a
radiation boundary condition is basically sound. The
excessive reflections observed at low spatial resolution are
simply a case of incompatibility between the governing
finite-difference equation and the asymptotic radiation
boundary condition of the partial differential equation. The
incompatibility becomes clear if one remembes that for a
given frequency the wave number, the phase and group
velocities of the finite difference equation (4), and those of
the partial differential equation (1) are not the same
[12, 13]. In other words, the wave number & in (5) is not
equal to the effective wave number of the finite difference
equation. To obtain compatibility we propose constructing
an improved radiation boundary condition based on the
asymptotic solution of the finite difference equation itself.

2.1 Asymprotic Solution of Finite Difference Equation
Consider the following finite difference equation of the
continuous variables x and y:
¢(x + Ax! ,V) B 2¢(x, Y) + qs(‘x - Axa J’)
(dx)
¢lx, ¥+ 4y) —2¢(x, y) + $(x, y — 4)
+ 3
(4y)*
+Ek2(x, )= f(x, y).

(8)
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It is easy to see that the discrete finite difference equation (4)
is a special case of (8). By selecting the subset x=m Ax, y=
n Ay, where m, n are integers, Eq. {8} becomes Eq. (4). That
is, the solution of Eq.(4) may be obtained by setting
x=m Ax, y=n Ay in the solution of Eq. (8}. The function
¢(x, y) depends continuously on x and y. Its Fourier trans-
form @(x, B), where a and £ are the Fourier transform
variables is, therefore, well defined. The relationship
between ¢(x, y) and a(a, f) are

1
(2n)?

Fa == [ stnyye = mavay  ©a)

#i )= [[ Fla ) e+ dod (9b)

It is to be noted that the Fourier transform of ¢(x + 4x, y)
is related to that of ¢(x, y) by the multiplicative factor
expliz Ax}), i.e.,

1 ® . o
(2ny’ JI et ax,y)emioron ax ay = enana, p),
(10)

By means of (10) the Fourier transform of (8) is

[(eiadx_z_*_e‘-izd.r) {eiﬁd_v_2+e—-:‘ﬂd}')
(4x)? (dy)?

zF(d, ﬁ):

+k2} 3 )
(1)

where F(«, §)is the Fourier tra_psform of the source function
f(x,¥). On solving (11) for ¢(«, ) and by inverting the
Fourier transform it is straightforward to find

e S T |

« d d. (12)

For convenience, we will assume that the angular fre-
quency & has a slight positive imaginary part (as in the
Laplace transform), i.e., Im(w) - 07, so that the wave num-
ber k (k = w/a,) in (12) also has a slight positive imaginary
part. Define the function 5(«) by

[ fadx , (Ax)? )7
n(a):[sm ( 5 )—k 3 } .

The branch cuts of #(x) in the complex a-plane are shown
in Fig. 5. In terms of p{«) (12} may be rewritten as

(13)

TAM AND WEBB

/[sin (E%) +i % n(a):l

x I:sin (ﬁ—AX)— E—AA% rr(ac):l} dff dz. (14}

The integrand of (14) has a simple pole at §, in the upper
half f-plane and a simple pole at §_ in the lower half
B-plane, where

ﬁiiiz%sin'l[i%n(a)]. (15)

On evaluating the p-integral of (14} by the residue theorem
it is straightforward to find that

rﬂ: et F(a’ﬁ+) fflax+ A, v
2 xj_w n(a) cos(B , Ay/2) T,
o y>0
#(x, ,V)-< EAxJ_OO Fa, p_) o) gy (16)
2 —es n(a) cos(B_ Ay/2) ’
\ y<0.

In the far field where r = (x* 4 3?)2 5 oo the a-integral
of (16) may be evaluated asymptotically by the method of
stationary phase [14]. Let (r, 8) be the polar coordinates,

i
im{o)

Refo )-__

FIG. 5. Branch cuts of the function n(«) in the complex a-plane. «, =
+(2/4x) sin~ Yk Ax/2), Im{k) - 0.



RADIATION BOUNDARY CONDITION AND ANISOTROPY

where x=rcos #, y=rsin 8. Equation (16) in the upper
half-plane may be rewritten as

® F{d ﬁ }er'(acosﬂ+ﬂ+sin9)r
s P+

T
¢(r, 0) =7 dx n{a) cos(f, 4y/2)

O<b<m 2 —an

doe. (17)

For large r the stationary phase point of the x-integral at
a=a,(f)is given by the roots of

a..

= —cot 0.
du co

X =ity

(18)

Equation {18} has many roots. All but one are aliased roots.
Here the aliased roots will be ignored. Upon evaluating the
integral of (17) asymptotically for large » and retaining only
the two lowest order terms in »~' it is easy to find that

IKi8)r Gl 9 1
(. 0) :i—m-[co(e)+—r(—}]+o(;5,—2), (19)

where
K(0)y=a,0) cos 0+ f (a,6))sin 0 (20)
2n 21 dx 1
Gol0) = [iﬁi(as) 1) S e
x Fla,, B4 (a,)). (21)

For n < 8 < 2x a similar asymptotic solution for ¢(r, #) may
be derived by using the second integral of (16). In (19) the
explicit form of G (f) can easily be found. It is not needed
in the rest of this paper and, hence, will not be written out
explicitly. Clearly in (19) the effective wave number is K(0)
and not k. Unlike &, K(#) depends on the number of grid
points per wavelength used as well as 6.

Now let (r,, ., 8. ) be the polar coordinates of the (m, n)
point on the computation grid of the finite difference equa-
tion (4a). In the far field the asymptotic solution is obtained
by replacing (r, &) by (r,,. ., 0,,.,) in {19). Thus

iKm.ntm.n G ([?m n) i
where
Km.n=K(9m'"), (23)

2.2, Improved Radiation Boundary Condition

We will first consider the construction of a radiation
boundary condition at the upper boundary of the computa-
tion domain parallel to the x-axis as shown in Fig. 6. The
boundary points are at #=N. The points in the row

581/113/1-9
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interior of

computatien domain

m

FIG. 6. Inierior, boundary, and ghost points near the upper right-
hand boundary of the computation domain.

=N+ 1 are ghost points. The radiation boundary condi-
tioti is to provide the values of p,,, », ( in terms of the values
at points inside and on the boundary of the computation
domain.

Figure 7 shows the geometric relations between the ghost
and interior points (m, N+ 1) and (m, N—1} and the
boundary point (m, N). Let A be one-half of the distance

Ay

F1G. 7. Geometrical relations of the ghost and interior points
(1, ¥+ 1), {m, N —1), and the boundary point {m, N).
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between the projections of the points (m, N+1) and
{m, N— 1} on the radius vector r,, . Then

Bm.Nil = Gm'.N

; 9
i(AJ’)COS m.N(l-'—_i)_*_O(r;jV'

Y v PN
(24)
By straightforward expansion it is readily found that
Ay)cos 8,
Go(B w1y = Go(0,,v) £ GolB, v) (_*L);_—‘_‘E
mN
+0(r, {25)

Gl(gm,Ni 1) — Gl(gm,N)

+ 00 W)
o N+ 1 Vo & ’
where
dG,
Gyp=—-.
T

Now by applying the asymptotic solution (22) of the finite
difference equation to the three points (m, N+ 1), (i, N),
and (m, N —1) it is easy to find after using (25) that

e Km N rm N 21
i = [GO(BM.N)rGawm.N)

l"m,Ni 1

)50 b G0

rm.N rm‘ N
+ 0 3) (26)
K Nt N G (em .
Pon= T [GO(GM.N) + M:l

Fon Fom ¥

+0(r32). (27)

Finally by eliminating the right-hand sides of (26) and
(27} the following radiation boundary condition for the
upper boundary of the computation domain at n=/N is
obtained:

1/2
Fou N HK, K, ;
— . N R 1Tm AL — K T 5}
pm,N+1‘_2( g nm i lim AT e pm.N
Fmov+1
(28)
r 1/2
_( ”'\Nl) ei[Km‘.wlrm.Nﬂ—Km.n'-lfm..vﬁ)pm'N_]_
Fonvt1

For the computation boundaries parallel to the y-axis a
similar radiation boundary condition may be constructed
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following the above procedure. For the right-hand bound-
ary at m1 = N the radiation boundary condition is

rM,n

172
) eKM < Laru Ln—KM.nrM,n)pMm

pM+],w1=2(

Far+1,n

(29)

—1,n

¥ 1/2
_ (ﬁM 1-") eHKM+1,r:fM+I.n_KM—I.n’M—I.n]pM
Var+ En

2.3. Numerical Results

To test the effectiveness of the improved radiation bound-
ary conditions the fundamental solution of the Helmholtz
equation is again considered. The numerical solution of the
finite difference equation (4} with a monopole source on
the right-hand side is recomputed using (28) and {29)
as the boundary conditions. The distribution of |p| in the
x-direction at 10 grid points per wave length is shown (the
solid curve) in Fig 8. The broken curve in this figure
corresponds to the exact solution. With the improved radia-
tion boundary condition the calculated pressure amplitude
distribution is smooth, totally free of reflections. Figures 9a
and b show the calculated pressure distribution at five
points per wave length in the x-direction and along a line at
45° to the x-axis. Again the computed curve is extremely
smooth showing no sign of any reflection from the boun-
daries of the computation domain. A very careful examina-
tion of the smoothness of the entire computed solution has
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FIG. 8. Calculated pressure intensity, |p|, distribution along the
x-axis. Monopole source at the origin. 10 grid points per wavelength:
improved radiation boundary condition; ——- exact solution.
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been carried out. No amplitude modulation can be detected
indicating that the improved radiation boundary condition
is, indeed, transparent to the outgoing acoustic waves.
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0.05

.00

3. ANISOTROPY

The use of finite difference approximation inevitabiy
introduces anisotropy into the governing finite difference
equation even though the Helmholiz equation itself is
isotropic. On a square grid as shown in Fig. 6 the number of
grid points per wavelength is the same in the x and y direc-
tion. However, the number of grid points per the same
length will be less in any other directon. What this means is
that when the number of grid points per wavelength is small
the wave propagation characteristics are strongly direction
dependent. To illustrate this point let us again consider the
solution of finite difference equation (14) with a monopole
nonhomogeneous source term, The improved radiation
boundary condition is imposed at the boundaries of the
computational domain. Figure 10 shows the calculated
contours of equal sound intensity (equal |p{) in the first
quadrant of the x— y plane using five grid points per
acoustic wavelength. Unlike Fig. 4 the contours are smooth,
indicating the absence of reflections. However, the contours
are not circular as the solution of the Helmholtz equation
ought to be. The noncircular geometry of the contours is a
direct consequence of the anisotropic characteristic of the

governing finite difference equation.
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(a) Calculated pressure intensity, | p|, distribution along the
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x-axis. Monopole source at the origin. Five grid points per wavelength. (b)
Calculated pressure intensity, |p|, distribution along a line a 45° to the
x-axis. Monopole source at the origin. Five grid points per wavelength:
improved radiation beoundary condition; —— Bayliss-Turkel

radiation boundary condition.

FIG. 10. Calculated contours of equal sound intensity, | p|, using the
improved radiation boundary condition, in the x-y plane. Monopole

source at the origin. Five grid points per wavelength.
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The large effect of anisotropy in Fig. 10 renders the solu-
tion somewhat useless as an approximation to the solution
of the Helmholtz equation. If one insists on using the finite
difference equation {4), perhaps because of its simplicity,
then, one way to make the solution useful is to develop a
scheme to correct or cancel the effect of anisotropy. The
possible existence of such a correction factor is not difficult
to sce since the finite difference equation (4) does contain
many of the same essential wave propagation characteristics
as the Helmholtz equation. The directional distribution is,
however, distorted by the finite size rectangular grid.
Clearly such a correction factor is a function of direction, 8,
and the number of grid points per wavelength employed in
the computation. However, the correction factor should not
be source dependent. To construct such an amisotropy
correction factor we propose using the asymptotic solutions
of the finite difference equation (22) and the Helmholtz
equation. By means of the method of Fourier transform the
asymptotic solution of the Helmholiz equation is easily
found to be

2 L2 ) - _
P01 =(TF ) i e R B )+ O )

(30)

where
X, =k cos 8, f.(&,)=ksin 6.

Equations (22) and (30) are similar in form. The pressure
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FIG. 11. Magnitude of anisotropy cortection factor as a function of 0

at Afdy =35, 10, 15, and 20: ——— /Ay =20; ~-— Afdy=15;
Aidy =10; Aldy=35.
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amplitude decays as r ~*/? in both solutions. The ratio of the
p

magnitudes of the leading terms of the two solutions (after
cancelling out the source function) is

D(B, kax, k Ay)= i‘Dl'“l*fll‘l'ﬂ'mllzequznion

|p| linite difference equation

=2|f7 (2:)"? nla,) cos(B  (a,) 4y/2)
x sin'? 0)/(Ax |k| ). (31)

The quantity D(8,kdx, kAy) is the sought-after
anisolropy correction factor. It scales the finite difference
solution to the solution of the Helmholtz equation. It is
source independent, This correction factor can be calculated
once and for all. Figure 11 shows the magnitude of the
anisotropy correction factor as a function of ¢ at i/Ay
(4x = Ay) equal to 20, 15, 10, and 3. As can readily be seen
the correction needed at five grid points per wavelength
is quite large. Even at 15 grid points per wavelength a 3%
correction is needed. Figure 12 shows the pressure
amplitude contours of Fig. 10 corrected (multiplied} by the
anisotropy correction factor of Fig. 11. The contours are
now circular and are indistinguishable from the exact
solution.

The anisotropy correction factor (31) is source inde-
pendent. It is, therefore, applicable to all noise radiation
problems irrespective of the complexity of the noise sources.
To demonstrate this point the acoustic field generated by a
fairly complicated source system will be considered in the
next section.
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FIG. 12. Calculated contours of equal sound intensity, |p|, with
anisotropy correction, in the x—y plane. Monopole source at the origin.
Five grid points per wavelength: —— exaci solution.
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4, SOURCE COMPLEXITY

The improved radiation boundary condition and
anisotropy correction factor developed in Sections 2 and 3
are acoustic source independent. As such they are applicable
even to problems involving sources of great complexity. In
this section a concrete example of this kind will be given
to illustrate the effectiveness of the improved radiation
boundary condition and the anisotropy correction factor.

Let us consider the problem of acoustic wave diffraction
by a flat plate as shown in Fig. 13. Here sound waves are
generated by a monopole source located at a distance of two
acoustic wavelengths from the plate. The flat plate is two
acoustic wavelengths long. The flat plate reflects and dif-
fracts the sound waves {rom the monopole source. On the
back side of the plate, say along the computational bound-
ary AB, the sound waves reaching there are mainly waves
diffracted at the two sharp edges of the flat plate. Because
the distances from the two edges are not the same the dif-
fracted waves arriving at a point on 48 would have a phase
difference. If the phase difference is small the two diffracted
waves would reinforce each other. If the phase difference is
close to 180° they tend to cancel each other. fn this way a
diffraction pattern with maxima and minima is formed
along 4B.

The present acoustic wave diffraction problem can be
solved exactly by separation of variables in an elliptic coor-
dinate system centered on the flat plate. The exact solution
will be used to compare with the numerical solution of finite
difference equation (4). In the numerical solution the dis-
cretized boundary condition on the flat plate at n= N is

Pm.f?v«lhpm,ﬁ'—tzo' (32)
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FIG. 13. Computation domain of an acoustic wave diffraction
problem involving 2 monopole source and a flat plate. The origin of coor-
dinates is located midway between the source and the plate,

131

Equation (32) corresponds to dp/dy =0 to second-order
ACCLTACY.

The values p,,  on the two sides of the plate are different.
On the top side of the plate (m, &+ 1) is an interior point
and (m, N — 1) is a ghost point. The value of p at the ghost
point is provided by (32). On the bottom side of the plate
{m, N—1) is an interior point and {m, N+ 1) is a ghost
point. Again the value of p at the ghost point is provided
by (32). In applying the finite difference equation (4) to the
left end point of the plate the value p at the first gnd point
to the right is taken to be the average of the two values of p
on the two sides of the plate. Similar treatment is applied to
the right end point of the plate.

Figure 14 shows the calculated pressure amplitude | pl as
a function of distance from A along 4B using 10 grid points
per wavelength, The curve labelled “uncorrected” represents
the solution of the finite difference equation without
anisotropy correction. The solution curve is smooth and
free from amplitude moduvlation. This indicates that the
improved radiation boundary condition is effective. The
curve labelled “corrected” is obtained by multiplying the
value of the uncorrected curve by the anisotropy correction
factor of Fig. 11. As can easily be seen the corrected curve is
generally closer to the exact solution. The largest correction
is around the 45° directions where the corrected curve is
nearly exact. Figure 15 shows a similar caiculation at five
grid points per wavelength. Even at this low spatial resolu-
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F1G. 14. Diffeaction pattern along boundary 4B of the computation
domain. Ten grid points per wavelength: exact solution; ———
solution with anisotropy correction; «....-.-.. uncorrected solution;
— .— Bayliss—Turkel boundary condition.
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FIG. 15, Diffraction pattern along boundary 4B of the compuiation
domain. Five grid points per wavelength: exact solution; ———
solution with anisotropy coirection; uncorrected solution;
— — Bayliss-Turkel boundary condition.

tion the uncorrected curve is again free from reflections.
However, it differs substantially from the exact solution.
The use of the anisotropy correction factor greatly improves
the accuracy of the solution. The greatest improvement is in
the sector between 8=45"° to 70°.

5. SUMMARY AND DISCUSSION

In this paper the radiation boundary condition for a finite
difference equation used to approximate the Helmholtz
equation is considered. It is found that an improved radia-
tion boundary condition can be constructed starting from
the asymptotic solution of the finite difference equation.
Computed results indicate that the new radiation boundary
condition vields essentially reflection free solutions even
when a small number of grid points per wavelength is used.
This is a significant improvement over the Bayliss-Turke]
boundary condition which Is based on the asymptotic solu-
tion of the partial differential equation. In section 3 the
effectiveness of the improved radiation boundary condition
has been demonstrated for the case of a simple source. In the
course of this work the improved radiation boundary condi-
tion has also been applied to a number of problems
involving more complex sources. They include the
diffraction of acoustic waves from a monopole source by an

TAM AND WEBB

adjacent thin plate of finite width, the case of two monopole
sources, and a simple sourse embedded in a uniform stream
(the convective wave equation is used in this case). In all
these examples no reflection was observed when using as
few as five grid points per wavelength. Because of space
limitation we are unable to include these examples in the
present paper.

The use of finite difference approximation inevitably
introduces anisotropy into the solution, The effect of
anisotropy can be quite large when the number of grid
points per wavelength used in the computation is small. A
way to correct this anisotropy is proposed, The correction
factor is independent of the acoustic sources and for a given
finite difference scheme can be computed once and for all.
An example is provided to demonstrate the effectiveness of
the anisotropy correction factor. Although not shown, the
same anisotropic correction factor has been found to be just
as effective for problems with fairly complicated noise
sources. The improved radiation boundary condition and
anisotropy correction factoer constructed in the way
described in Sections 1, 2, and 3 are also effective for higher
order difference schemes and in problems with a uniform
mean flow.

In this work, attention is focused primarily on correcting
the amplitude of the computed solution. This is because for
most aeroacoustics problems the sound intensity is the most
important quantity. However, it must be pointed out that
there ar¢ problems in which an accurate prediction of the
relative phases of the acoustic waves in different directions
is also important. For such problems a relative phase
correction factor can be developed in a manner similar to
that discussed in Section 3 by comparing the phases of the
asymptotic solution of the finite difference equation and
that of the partial differential equation. When both the
amplitude and phase corrections are used then the finite dif-
ference computation amounts to essentially the determina-
tion of the Fourier transform of the source function. This
should be an attractive strategy for some computational
aeroacoustics problems, especially those with complex noise
sources and with reflections and diffractions of the acoustic
waves by solid bodies.
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